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It is of interest to examine the results of Chandrasekaran 
(1959) in the light of the present point of view. He measured 
values of 0c in a number of cases in the hope that it would 
be a suitable measure of the perfection of the crystals 
studied. If ~ traversed a smooth curve between ~, and ~m, 
it would indeed be suitable, but the form of the dashed 
curve in Fig. 1 shows that c¢ is not a good measure of per- 
fection. As a matter of fact, Chandrasekaran gives data 
which support the general form of the dashed curve. In 
one case for S=(0.10)Sm he found ~=(1.06)~p, and in 
another for S=(0"26)Sm he found ~=(0.98)~p. The cor- 
responding enhancement factors were 20 and 6, and these 
were the two largest enhancement factors which he studied. 
These cases had different values of 20M, but this does not 
affect the general argument greatly, as was pointed out 
above. 

In conclusion, it should be pointed out that the important 
consideration is the fact that we have measured the value 
of the polarization ratio of a monochromated beam for an 
actual apparatus using an accurate technique. The value 
obtained not only is not close to that appropriate to a 
mosaic monochromator ,  but is not even in the range 
between such a value and that calculated for a perfect 
monochromator.  Using the mosaic value may lead to an 
error in the polarization factor of up to 15%. This result 

has important applications to any study of the angular 
dependence of monochromatic X-ray scattering, no matter 
what the form of the sample, for both Bragg and diffuse 
scattering, and regardless of the position of the mono- 
chromator with respect to the sample. In fact, it may be 
necessary to use these considerations for reflections of 
unpolarized radiation which suffer appreciable extinction. 
The validity of the plausibility arguments given to explain 
the situation do not alter the necessity of accepting the 
measured value of polarization ratio. 

I should like to thank Drs D .R .Ch ipman  and C.B. 
Walker for discussion and comments on the manuscript. 
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A recent calculation of the diffraction effects produced by condensed sheets of interstitial atoms is discussed. 
An error is pointed out; this error vitiates the calculation. 

Sabine (1966) has recently published a calculation of the 
diffraction effects produced by condensed layers of inter- 
stitial atoms in face-centered cubic crystals. His calculation 
predicts peak shifts which, for small values of the fault 
probability ~, are opposite to the shifts previously computed 
for extrinsic faults by Johnson (1963) (for 0 _<~ _< 1) and by 
Warren (1963) (for ~,~ 1). The results given by Johnson and 
by Warren agree when ~,~ 1. Sabine notes that in the limit 
of low fault probability (~<~ l) the diffraction effects pro- 
duced by condensed interstitial layers should be the same as 
those produced by extrinsic faults. He does not explain the 
discrepancy. 

I believe that this discrepancy is accounted for by the 
fact that there is an error in Sabine's calculation. This error 
is to be found in the difference equation scheme by which 
Sabine computes the probabilities of the possible stacking 
sequences. (Since we are particularly interested in case 
~,~1, Sabine's parameter /~=~/(1 +~) will be used inter- 
changeably with ~). 

Suppose that a given layer is A. If this layer is part of the 
original crystal then the probability that the next layer will 
be B is (1 -/~). But if this A layer is a condensed layer then 
the probability that the next layer will be B is/~. [For sup- 
pose that this A layer is the only condensed layer in the 

crystal (so that/%+0); in this case the next layer is necessarily 
C.] This distinction between original and condensed planes 
is shown in Sabine's 'probability tree'. Unfortunately, Sa- 
bine's difference equation scheme does not incorporate this 
distinction between original and condensed layers. Specifi- 
cally, the 'additional relation' 

pA = ppn,,_, + (1 -,8)PC_x* 

is true only if the ( m -  1) layer is part of the original crystal. 
If the ( m -  1) layer is a condensed layer this relation must 
be changed to 

PA m = (1 --fl)eBr.,_ , +flPC 1 . 

This difficulty seems to be insurmountable in the difference 
equation approach used, and clearly vitiates Sabine's sub- 
sequent results for all values of the fault probability. 

The inherent difficulty in applying such a difference 
equation scheme to this problem can be seen as follows. 
There are, allowing for normalization of the probabilities 
to unity, two independent probabilities for the stacking of 

* There is a typographical error in this equation in Sabine's 
paper. The last term should read (l-f l)Pm-2 c. Sabine's sub- 
sequent equations follow only if this correction is made. 
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the mth layer, say P~ and P~, which must be computed. 
This requires two equations relating PA and P~ to the 
corresponding quantities for the layers ( m -  1) and (m-2) ,  
respectively. These two equations (which are to hold for 
all m) must be mutually consistent. That is, given values of 
say, P~ and pB5 we can compute P~ and P7 B either by a single 
application of the equation relating the (m) and ( m - 2 )  
layers, or by repeated application of the equation relating 
the (m) and ( m -  1) layers and we must of course get the 
same answer either way. The difference equations given by 
Sabine are not consistent in this sense. 

The possibility of this sort of internal inconsistency arises 
from the fact that the problem has been overspecified. The 
diffraction effects are determined by the relative positions 
of the layers, and the relative positions are determined by 

the stacking sequence written in terms of Frank's (1951) 
transition symbols A and "7. Allowing for normalization 
of probabilities there is then only one variable, Pm A, the 
probability that the ruth transition be A ; only one difference 
equation need be written, and the possibility of internal in- 
consistency thus disappears. However, the construction of 
a suitable equation for the problem in question appears to 
be very difficult. 
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An objection to the treatment of the problem of the diffraction of X-rays by crystals containing condensed 
sheets of interstitial atoms is discussed. 

Johnson (1968) has concluded that my calculation of the 
diffraction effects produced by condensed sheets of inter- 
stitial atoms in a face-centred cubic crystal is in error. 

The calculation is certainly not exact in that, as Johnson 
points out, vectors originating on condensed layers have 
been ignored. This should not seriously affect the results 
for ~ small in that in the computation of the Patterson 
function for any value of the interlayer spacing the numbers 
of vectors from uncondensed to uncondensed layers, from 
uncondensed layers to condensed layers and condensed to 
condensed layers are in the ratio (1-002:2~(1--00:0~2 , and 
the major contribution to the average value of the structure 
factor product will come from the product for uncondensed 
to uncondensed layers. Warren (1963) makes a less severe 
approximation in his treatment of the double deformation 
fault problem, by neglecting terms due to vectors from layers 
in a fault to those in another fault. 

The second difficulty is more serious and could vitiate the 
calculation, although Sato (1966) solved the triple fault 
problem by difference equations and a recent calculation 
by Kakinoki (1967) confirms his result as well as Johnson's 
result for the double deformation fault problem. 

If Johnson's statement that the relationship between the 
mth and (m-2 ) th  layer should be the same whether 
obtained directly or by applying the relationship between 
the ruth and (m - 1)th layers twice then only the deformation 
fault problem (Paterson, 1952) can be treated by the method 
of probability trees used by Warren (1959) since the rela- 
tionship between the ( m -  2)th and ( m -  1)th layer is identical 
in all problems. To illustrate this the four classic problems 
will be considered. In each case ct is the appropriate faulting 
parameter. 

* Present address: A.A.E.C. Research Establishment, Lucas 
Heights, N.S.W. 2232, Australia. 

(1) Growth faults in h.c.p, crystals (Wilson, 1942) 
Wilson's difference equation is generated by the trees 

m-2 m-1 m 1 - a  

and its cyclic permutations through the relations 

_ B 2 C Pg = ( 1 - ~ ) e ~  2+ct(1-~)em_2+ct Pro-2 (1.1) 

pA m--1 =(1 --~)P c - 2 q- °cPBm - 2 (1.2) 

A ~ p c  - 1 (1.3) P m - 2 + P m - 2 +  m--2-- • 

When the boundary conditions 
P 6 t = I , P ~ = 0  and P6~=0, P~=½ are used Wilson's 

result is obtained even though the second boundary condi- 
tion is inconsistent with the tree. 

(2) Growth faults in f.c.c, crystals (Paterson, 1952) 
Paterson's difference equation is generated by the tree 

(also used by Sabine, 1966) 

m-2 m-1 m 

1 - a  C 

'l" ~-""-" B ' ~  A 
A ~ " - " ' a  B 

and its cyclic permutations through the relations 

P~ =ctP~_2+(1-ct)EP~_2+ct(1-~)PC_ 2 (2.1) 

and (1.2) and (1.3). Using identical boundary conditions to (1) 
Paterson's result is obtained. 


